PDE8 Regulates Rapid Teff Cell Adhesion and Proliferation Independent of ICER

نویسندگان

  • Amanda G. Vang
  • Shlomo Z. Ben-Sasson
  • Hongli Dong
  • Barbara Kream
  • Michael P. DeNinno
  • Michelle M. Claffey
  • William Housley
  • Robert B. Clark
  • Paul M. Epstein
  • Stefan Brocke
چکیده

BACKGROUND Abolishing the inhibitory signal of intracellular cAMP by phosphodiesterases (PDEs) is a prerequisite for effector T (Teff) cell function. While PDE4 plays a prominent role, its control of cAMP levels in Teff cells is not exclusive. T cell activation has been shown to induce PDE8, a PDE isoform with 40- to 100-fold greater affinity for cAMP than PDE4. Thus, we postulated that PDE8 is an important regulator of Teff cell functions. METHODOLOGY/PRINCIPAL FINDINGS We found that Teff cells express PDE8 in vivo. Inhibition of PDE8 by the PDE inhibitor dipyridamole (DP) activates cAMP signaling and suppresses two major integrins involved in Teff cell adhesion. Accordingly, DP as well as the novel PDE8-selective inhibitor PF-4957325-00 suppress firm attachment of Teff cells to endothelial cells. Analysis of downstream signaling shows that DP suppresses proliferation and cytokine expression of Teff cells from Crem-/- mice lacking the inducible cAMP early repressor (ICER). Importantly, endothelial cells also express PDE8. DP treatment decreases vascular adhesion molecule and chemokine expression, while upregulating the tight junction molecule claudin-5. In vivo, DP reduces CXCL12 gene expression as determined by in situ probing of the mouse microvasculature by cell-selective laser-capture microdissection. CONCLUSION/SIGNIFICANCE Collectively, our data identify PDE8 as a novel target for suppression of Teff cell functions, including adhesion to endothelial cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Expression and Function of PDE8 and PDE4 in Effector T cells: Implications for PDE8 as a Drug Target in Inflammation

Abolishing the inhibitory signal of intracellular cAMP is a prerequisite for effector T (Teff) cell function. The regulation of cAMP within leukocytes critically depends on its degradation by cyclic nucleotide phosphodiesterases (PDEs). We have previously shown that PDE8A, a PDE isoform with 40-100-fold greater affinity for cAMP than PDE4, is selectively expressed in Teff vs. regulatory T (Treg...

متن کامل

Regulatory T-cells and cAMP suppress effector T-cells independently of PKA-CREM/ICER: a potential role for Epac.

cAMP signalling is both a major pathway as well as a key therapeutic target for inducing immune tolerance and is involved in Treg cell (regulatory T-cell) function. To achieve potent immunoregulation, cAMP can act through several downstream effectors. One proposed mechanism is that cAMP-mediated suppression, including immunosuppression by Treg cells, results from activation of PKA (protein kina...

متن کامل

Estrogen-related receptor-α is a metabolic regulator of effector T-cell activation and differentiation.

Stimulation of resting CD4(+) T lymphocytes leads to rapid proliferation and differentiation into effector (Teff) or inducible regulatory (Treg) subsets with specific functions to promote or suppress immunity. Importantly, Teff and Treg use distinct metabolic programs to support subset specification, survival, and function. Here, we describe that the orphan nuclear receptor estrogen-related rec...

متن کامل

Melatonin Induced Schwann Cell Proliferation and Dedifferentiation Through NF-ĸB, FAKDependent but Src-Independent Pathways

Background: Peripheral nerve injury (PNI) is a common condition that compromises motor and sensory functions. Peripheral nerves are known to have regenerative capability and the pineal hormone, melatonin, is known to aid nerve regeneration. However, the role of Schwann cells and the pathways involved remain unclear. Thus, the aim of this study is to identify the effects of melatonin on Schwann ...

متن کامل

O 7: KCNK2 Regulates the Nanoscale Formation of Immune Docking Structures on Brain Endothelial Cells Under Autoinflammatory Conditions

KCNK2 was previously shown to regulate immune-cell trafficking into the central nervous system (CNS). Kcnk2-/- mice demonstrated a more severe disease course in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, due to an increased immune-cell migration into the CNS. An upregulation of the cellular adhesion molecules ICAM1 and VCAM1 on brain endothelial cells in K...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010